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Abstract 

This mini-review presents recent advancements in the application of machine learning to both non-2D and 2D materials. 

For non-2D materials, the main focus is on construction materials, energy and environmental materials, and advanced 

functional materials. In the case of 2D materials, the mini-review emphasizes the role of machine learning in predicting 

electronic and structural properties, as well as in identifying defects and phase preferences. The mini-review  

underscores the crucial role that machine learning plays in advancing materials science by enabling rapid screening of 

materials, predicting their properties, and significantly reducing the time required for such processes. 
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Introduction 

In recent years, the integration of machine learning (ML) with materials science has significantly improved the efficiency 

and accuracy of predicting material properties, synthesis routes, and performance characteristics, thereby accelerating 

advancements in the field. The fusion of ML enables materials scientists to explore a broader materials space and identify 

optimal candidates for different applications with unprecedented speed and precision. This mini-review aims to  

summarize the progress in the application of machine learning in both non-2D and 2D materials. 

 

1. Advances in Machine Learning for Non-2D Materials Research 

1.1. Construction Materials 

Construction materials, particularly those used in large-scale infrastructure projects, require precise mechanical  

properties. Traditionally, determining these properties involves extensive and time-consuming experimental testing. The 

advent of machine learning (ML) offers a new avenue for efficiently predicting these properties. Babatunde Abiodun  

Salami et al.(2022)[1] employed 232 experimental results to apply ML models such as Artificial Neural Networks (ANN), 

Gene Expression Programming (GEP), and Gradient Boosted Trees (GBT) to predict the compressive strength of  

lightweight foamed concrete. They found that the GEP model outperformed the others in predicting the compressive 

strength of foamed concrete, and the developed model can be utilized to optimize mixture designs, thus accelerating the 

development process. 
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Through the use of extensive data and advanced algorithms, ML significantly enhances the ability to predict the  

compressive strength of construction materials. The effective application of ML in compressive strength prediction 

holds substantial potential for accelerating material design optimization in the construction sector. 

1.2. Energy and Environmental Materials 

Materials with specific properties are critical in the search for sustainable energy solutions and environmental  

remediation. For example, in thermoelectric materials, U.S. Vaitesswar et al. (2024)[2] successfully utilized ML models 

to predict thermoelectric materials with high power factors and identified four new half-Heusler compounds as  

promising thermoelectric materials. Their results demonstrated that the random forest (RF) model showed the best 

predictive performance and revealed that just ten key features were sufficient to predict the power factors of  

thermoelectric materials. 

In environmental remediation, ML has enabled the design of biochar-based materials. Kumuduni Niroshika Palansooriya 

et al. (2022)[3] applied ML models including RF, Support Vector Regression (SVR), and ANN to predict the heavy metal 

immobilization efficiency of biochar in biochar-amended soils. They found that the hybrid SVM-ANN model performed 

best. The study identified significant features, such as the nitrogen content in biochar and biochar application rate, that 

influence heavy metal immobilization, providing insights for developing biochar-based remediation strategies. 

ML enhances material development efficiency by identifying key features and utilizing minimal feature selection  

techniques. The availability of multiple ML models in material research offers researchers a variety of options to identify 

the most suitable and optimal model. 

1.3. Advanced Functional Materials 

Advanced functional materials, such as Metal-Organic Frameworks (MOFs) and photonic materials, are at the forefront 

of research due to their unique properties and wide-ranging applications. However, designing these materials for  

specific functions, such as gas separation or molecular property prediction, presents a complex challenge. ML has 

emerged as a key tool in this critical field. In the area of gas separation, Jian Guan et al.(2022)[4] used RF models to 

study the CO2/CH4 separation performance of MOF-based mixed matrix membranes (MMMs), finding that MOF type, 

polymer type, and loading significantly influence the ML model's performance. This research is valuable for the design 

and development of CO2 capture MMMs. 

In the field of molecular property prediction, Hui Zhang et al. (2022)[5] investigated the use of optical neural networks 

(ONN) on a chip, utilizing a complex-valued neural network optimized through genetic algorithms. The researchers 

found that complex-valued neural networks outperformed real-valued neural networks in predicting molecular  

properties. ML models enable the task of molecular property prediction to be performed with high accuracy and low 

power consumption, accelerating material design and development. 

Additionally, Siyu Isaac Parker Tian et al. (2022)[6] explored advanced ML models including Roost, CrabNet, MEGNet, 

and CGCNN to compare composition-only models and composition-plus-structure models. They discovered that, for  

stable compounds, both models predicted properties, similarly, suggesting that composition alone is sufficient to predict 

many properties, while structure is a sufficient but not necessary condition for predicting stable compounds. 

ML has greatly facilitated the design and optimization of advanced functional materials by focusing on key features and 

optimizing datasets. Researchers can now conduct more accurate and faster predictions, accelerating material  

development. Furthermore, for stable compounds, the emphasis on compositional features provides researchers with 

valuable insights for feature selection, expediting the overall research process. 

 

2. Advances in Machine Learning for 2D Materials Research 

2.1. Electronic Properties 

Understanding the electronic properties of two-dimensional (2D) materials, such as work function, bandgap, and carrier 

concentration, is crucial for developing high-performance electronic and optoelectronic devices. The introduction of 

machine learning (ML) models has increasingly provided high-precision predictions of these properties, offering an  

alternative to traditional first-principles calculations and experimental methods. 

SVOA Materials Science & Technology 

Advances in Machine Learning Applications in Material Science: From Non-2D to 2D Materials 

https://sciencevolks.com/materials-science/


5 

 

 

For the prediction of work function, Pranav Roy et al. (2023)[7] found that non-linear ML models such as random  

forests and neural networks outperformed linear regression when predicting the work function of 2D MXenes using 15 

features. The researchers also identified that the properties of surface termination, particularly electronegativity, were 

the most significant feature affecting the work function of MXenes. Ehsan Alibagheri et al. (2021)[8] used gradient 

boosting (GB) ML models with 15 input features to predict electronic and structural properties of 2D materials. The 

study showed that the prediction of metallic/non-metallic classification, bandgap, density of states, and work function 

exhibited high accuracy, highlighting the role of feature engineering in enhancing ML models' predictive power. These 

findings demonstrate the potential of ML to reduce computational costs and time in accelerating the discovery of ideal 

2D materials.In the area of bandgap prediction, Yu Zhang et al. (2021)[9] developed an ML-based method to replace  

traditional first-principles calculations. Training their models on 2817 datasets, they found that gradient-boosted  

decision trees (GBDT) and random forest (RF) models outperformed support vector regression (SVR) and multilayer 

perceptron (MLP) models, with R2 values greater than 90% and root mean square errors (RMSE) of 0.24 eV and 0.27 eV, 

respectively. Zhen  

Zhu et al. (2020)[10] combined density functional theory (DFT) and ML to predict electronic properties of 2D  

semiconductors. They found that when elemental information was used as predictors, the SVR model accurately  

predicted electronic properties such as bandgap, valence band maximum (VBM), and conduction band minimum (CBM) 

with an RMSE below 0.15 eV. SVR models, which require no DFT calculations, are advantageous for quickly screening 2D 

semiconductor materials. 

In the study of MoS2, Yan Qi Huan et al. (2021)[11] used experimental current measurements to predict the breakdown 

mechanism and voltage of monolayer MoS2 devices. The research utilized a deep neural network (DNN) classifier, 

achieving 79% accuracy in classifying breakdown mechanisms under bias currents below 20V. The study revealed that 

increasing the carrier concentration in monolayer MoS2 devices reduced the occurrence of breakdown, offering a rapid 

and non-destructive method for characterizing the breakdown voltage of 2D materials. 

2.2. Structural Properties 

The structural properties of 2D materials, including thickness, mechanical stability, heterostructure, and binding energy, 

play a critical role in determining their performance and application. Machine learning enables the efficient prediction 

of these structural characteristics, improving our understanding and application of 2D materials. 

In the study of thickness, C.E. Ekuma(2024)[12] introduced the THICK2D framework, based on ML models and large 

language models, which accurately predicts the thickness of 2D materials in the range of approximately 2A  to 13.5A . 

When applied to well-known 2D materials such as graphene, GaN, and TiO₂, the predicted values were within 5% of the 

experimentally reported values. In the context of mechanical and thermal performance, Bohayra Mortazavi et al. (2022)

[13] used ML interatomic potentials (MLIPs) and DFT to study the mechanical and thermal properties of BC2N  

monolayers. They found that MLIP models outperformed empirical interatomic potentials in predicting lattice stability 

and revealed that BC₂N monolayers exhibit anisotropic mechanical properties and high thermal conductivity, making 

them ideal for thermal management applications. Furthermore, Bohayra Mortazavi et al. (2020)[14] employed a  

combined approach of DFT, AIMD, and MLIPs to predict the phononic properties of two-dimensional materials,  

revealing that AIMD and MLIPs exhibit remarkable agreement with DFPT results concerning phononic characteristics. 

In heterostructure studies, Daniel Willhelm et al. (2022)[15] used ML and DFT models to predict the properties of van 

der Waals (vdW) heterostructures. Their findings showed that ML models accurately predicted critical descriptors, such 

as electronic properties, interlayer distances, and binding energy. The research also highlighted significant differences 

in equilibrium interlayer spacing between AA and AB stacking configurations in vdW heterostructures, aiding in the  

rapid screening of materials for optoelectronic applications. Sherif Abdulkader Tawfik et al. (2019)[16] had similar  

findings, showing that the combination of DFT and ML models could efficiently predict the interlayer distance and 

bandgap of bilayer heterostructures, significantly accelerating the prediction process. 

Notably, Julia Fischer et al. (2020)[17] predicted the binding energies of adsorbates on graphene single-atom catalysts 

(SACs) by extracting topological structures from interatomic networks, such as lengths and angles, statistical features, 

and partial radial distances. Their models, based on RF and SVR, achieved R2 values greater than 0.950 for both training 

and test sets, demonstrating the accuracy of ML-based prediction methods, which offer a fast and cost-effective way to 

discover suitable SACs. 
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2.3. Defects and Phase Preferences 

Defects and phase preferences in 2D materials can significantly affect their electronic, optical, and mechanical  

properties. In defect studies, Pengru Huang et al. (2023)[18] developed an ML-integrated platform for material design, 

using datasets of pristine and defective materials to study the correlation between defect structures and properties. 

Their research revealed that the formation energy of defects in TMDCs is influenced by lattice perturbation and the  

introduction of mid-gap states. The sublattice structure affected the oscillation behavior of defect interactions.  

Additionally, Nathan C. Frey et al. (2020)[19] employed a combination of deep transfer learning, machine learning, and 

first-principles calculations to predict key characteristics of point defects in two-dimensional materials. In this study, 

the researchers found that machine learning models can effectively predict defect formation energies and energy levels 

without requiring detailed defect calculations. This provides insights for selecting materials for quantum computing and 

resistive memory applications. 

In phase preference studies, Pankaj Kumar et al. (2022)[20] used high-throughput quantum calculations and ML  

algorithms to predict the phase preferences of transition metal dichalcogenides (TMDs). The study showed that ML 

models could accurately predict the phase preferences of TMDs based on their physical and chemical properties,  

identifying six key features that significantly influence phase formation energy and phase preferences. 

 

Conclusions 

The integration of machine learning (ML) into the study of both non-2D and 2D materials has significantly advanced the 

field of materials science. For non-2D materials, particularly in construction, energy, and environmental materials, ML 

models have demonstrated their ability to predict key properties such as compressive strength and thermoelectric  

performance with high accuracy, thereby accelerating material design and optimization processes. In advanced  

functional materials, ML models have been essential for optimizing properties like gas separation efficiency and  

molecular property prediction, offering new avenues for rapid discovery and development. 

In 2D materials, ML has proven invaluable for predicting electronic properties, such as work function and bandgap, and 

structural properties, including thickness, mechanical stability, and heterostructure behavior. These capabilities allow 

researchers to bypass time-consuming experimental and first-principles methods, reducing computational costs and 

time while maintaining high accuracy. Moreover, ML's application to defect and phase preference studies in 2D  

materials has enhanced the understanding of how structural and electronic properties are affected, facilitating the  

design of materials with optimized performance for specific applications. 

The use of machine learning in both non-2D and 2D material research is revolutionizing the discovery and optimization 

process, enabling faster, more efficient, and more accurate predictions of material properties. This marks a significant 

step forward in the development of next-generation materials for a wide range of technological applications. 
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