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Abstract:  

A mini review is presented on recent advances in the area of DSSCs for indoor operation, focusing on both lab scale ex-

periments and industrial applications. The suitability of DSSCs for indoor operation, when compared to other PV tech-

nologies, is highlighted and the perspective for universal DSSCs, that are able to maintain their performance during radi-

cal changes in their lighting environment, is presented. 
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Introduction 

There has been a recent re-emergence of Dye Sensitized Solar Cells (DSSCs [1]) and a key factor for this is their suitabil-

ity for operation under indoor lighting environments. This is especially evident in their potential applications in build-

ings and devices. Building applied and building integrated photovoltaics (BAPV/BIPV) [2] as well as product integrated 

photovoltaics (PIPV) [3]-especially for low power electronics- are some of the more promising applications for DSSC. 

BAPV are photovoltaics applied on existing building infrastructure, while with BIPV, common building materials can be 

replaced with power generating elements [3], both allowing for energy generation in close proximity to where energy is 

required, streamlining the operation. Meanwhile, PIPV permit power generation from PV embedded on the product it-

self. These applications require novel technologies that perform well, when operating under low intensity light environ-

ments (most often indoors or under diffuse light). DSSCs can be easily manufactured using low-cost wet-chemistry pro-

cesses, they have an eco-friendly profile, their efficiency is independent from the light’s angle of incidence and  they pre-

sent a variety in color and transparency [4]–[6]. However, what makes them especially attractive for the aforemen-

tioned applications is their excellent performance under low intensity light.  

Indoor lighting conditions are strikingly different from solar irradiated environments both in light intensity and in emis-

sion spectra [7]. The disparity in light intensities is enormous: An illuminance of ~400 lux is expected in an office room 

(lux being the measurement unit for indoor light intensity), while the standard 1 sun AM1.5G irradiation (Standard Test 

Conditions, STC, 100mW/cm2) corresponds  to ~105 lux [7], [8]. Thus, performance under 1 sun cannot be indicative of 

indoor performance.  
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For example, poly-Si (polycrystalline silicon), a cornerstone PV technology with good performance under solar irradia-

tion, severely underperforms when placed under indoor light [7]. Instead, it is thought that amorphous thin films and 

nanomaterials are more suitable for diffuse incident light [9]. In fact, it is has been confirmed that the efficiency of DSSCs 

increases, when the light intensity decreases under 20 mW/cm2 [7], [10]. This characteristic puts DSSCs in an advanta-

geous position when working under weak solar light conditions (e.g. under cloud covered sky) and justifies their superi-

ority versus OPVs and silicon cells [11], [12] under indoor lighting. 

Indoor focused DSSC optimization research 

The basic principle of DSSC operation [13] is the excitation of dye molecules (chemisorbed in the form of a monolayer 

onto a semiconductor, designated as working electrode) followed by the injection of the electrons into the semiconduc-

tor conduction band. The photogenerated charges are then collected by the electrode substrate, while the dye is regen-

erated by a redox mediator in the electrolyte present between the photoanode and the counter electrode. A lot of efforts 

have been devoted to the development of efficient components (electrodes, dyes, electrolytes, redox couples) and there 

has been increased interest in the research community towards optimizing DSSCs for indoor conditions.  

Freitag et al. (2017) [14], prepared a copper redox-DSSC co-sensitized with the highly performing XY1/D35 dyes that 

achieved 28.9% efficiency under 1000 lux of fluorescent light, outperforming GaAs cells. Power generation of this mag-

nitude was considered sufficient for the autonomous operation of a range of electronic devices operating indoors. In 

another of their works, for the powering of autonomous Internet of Things (IoT) devices -with machine learning capabil-

ity- under ambient light, Michaels et al (2020) [15] prepared copper electrolyte based DSSCs through co-sensitization 

(XY1/L1), reaching 34% efficiency under 1000 lux of fluorescent light.  

In the work of Yiming Cao et al (2018) [16] DSSC configurations, with the Y123/XY1b dye combination and copper elec-

trolytes, were prepared and characterized under 1 sun and under indoor fluorescent light. The’’1 sun’’ version of their 

DSSCs had the required redox species (Cu(II)) concentration for sufficient mass transport, while the ‘’indoor perform-

ing’’ version of their cells was prepared with significantly lowered redox species concentration, in order to reduce re-

combination. A 2.8 cm2 cell achieved 31.8% efficiency under 1000lux fluorescent light (outperforming reported silicon, 

GaAs, OPV and perovskite cells).   

As for advances concerning the simpler robust [I-/I3- redox - Ru dye] DSSC configuration, Rossi et al. (2015) [4] custom-

ized a N719-DSSC with a low I2 content I-/I3- electrolyte, thereby preparing an indoor optimized DSSC with an efficiency 

of 12.4% under 200lux fluorescent light, the highest reported efficiency for I-/I3- DSSCs under fluorescent light. Their 

customized device outperformed other tested PV technologies such as a-Si and p-Si. As expected, though their optimiza-

tion strategy allowed for a highly performing indoor DSSC, the same modifications led to a decrease in performance un-

der 1 sun (STC).   

Industrial applications 

As mentioned before BIPV/BAPV/PIPV benefit greatly from DSSC technology under indoor environments. An ever-

increasing number of companies have turned their sights on the potential for indoor operating DSSCs [17]–[19], such as 

H.Glass [20], a Switzerland based manufacturer of glass-sealed DSSC solar panels for glass facades and building materi-

als, with applications in indoor and outdoor environments or Fujikura, with DSSC modules customized for performance 

under specific light intensity conditions [5]. 

For Sweeden-based Exeger [21], one of the areas of interest is the powering of electronic devices with natural and artifi-

cial light by solar cell integration, turning devices such as wearable electronics, tablets and e-readers into self-powered 

devices. In the area of BIPV, their goal is for one square meter of façade to power one square meter of office space. Their 

solar cells are purported to take advantage of even diffuse and indoor light in order to produce electricity ‘’from dawn 

until dusk’’.  

GCELL [17]’s lightweight DSSCs, designed for indoor energy harvesting product applications, are attuned to the 50-2000 

lux lighting intensity range. Their cells are reported to generate a power density of 4-7 μW/cm2 at 200 lux, allowing for 

indoor powered sensors, e-readers and other applications.  
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In 2016, GCell introduced the world’s first indoor solar powered iBeacon, which uses renewable energy to enable broad-

casting. Furthermore, their solar cells have been used as part of a hotel’s large scale indoor solar system [22] for the 

powering of motorized blinds.  

3GSolar [11], another provider of DSSC for electronic devices, has set a goal of replacing finite power sources in elec-

tronic devices with integrated miniature PV cells that harness energy from indoor or outdoor environment and achieve 

wireless and maintenance-free operation for the lifetime of the device (more than ten years). In low light conditions 

(under 2700k LED, 1000 lux), 3GSolar cells can reach ~16% efficiency. One such product is their Bluetooth sensor [23], 

able to operate under light intensities of over 100 lux.  

Future perspectives: the importance of DSSC adaptability to different lighting conditions 

 

From the above cases, the superiority of DSSCs when compared to other PV technologies under indoor light sources, is 

especially evident. What is also evident, however, is the ‘’fork’’ in optimization strategies when considering outdoor or 

indoor DSSC operation conditions. Optimizing a PV device for indoor environments usually detracts from its 1 sun per-

formance [7], which is why specific operation environment designations are seen, even in industrial products [19]. 

Many past studies and industrial products present DSSCs singularly optimized for either high or low intensity operation 

conditions, because of the trade-off between indoor/outdoor performance optimization. The adaptability of DSSC can be 

further enhanced and it is crucial for them to be able to maintain their performance when the nature the incident light 

changes, regarding intensity or emission spectrum.  

The disparity between lab testing conditions and real life operation conditions is known for energy systems  [24]–[26]. 

Under realistic operation conditions, the performance of a PV device [27] is not expected to remain identical to the per-

formance evaluated under ideal lab conditions due to changes in light intensity and other factors concerning the sur-

rounding environment [7] (e.g. daily cycle). Especially for handheld PIPV devices such as tablets, for which the operation 

environment is expected to change often (e.g., from outdoors to indoors), a DSSC optimized singularly for a specific 

lighting environment will not sufficiently cover energy needs (due to decreased performance during operation under 

lighting conditions different from the initially targeted ones). Thus, the perspective of a single DSSC maintaining perfor-

mance even when the lighting conditions radically change must be adopted during the optimization step. And, as the 

electrolyte is one of the key parameters that defines the final DSSC’s optimization goal, focus should be placed on its 

proper formulation for maximum DSSC operational flexibility.  

The most common DSSC configuration utilizes a (dye-sensitized) mesoporous TiO2 thin film as the semiconductor and a 

redox electrolyte (based on copper, cobalt or I-/I3- shuttles, with differences in molecule size, charge, redox potential, etc 

that strongly affect the device performance) as the medium. There are factors (such as transparency) that depend on the 

concentration of redox species in the electrolyte, with the most significant being the mass transport of the redox species 

and the prominence of recombination during operation.  

Device function under high solar light intensities usually requires high concentrations of redox species [7], [28] for  suf-

ficient dye regeneration, while, for operation under indoor light sources, lower concentrations are needed to prevent 

negative effects such as the recombination of electrons [29]. Thus, a finely tuned formulation must be achieved in DSSCs, 

in order to enhance indoor operation without impairing the function under higher intensity light.  The universal ‘’pan-

illumination’’ function of DSSCs, good performance under a wide range of different lighting conditions, is a requirement 

for modern BIPV/BAPV and PIPV applications.   

Conclusions 

In this brief survey, lab and industrial scale advances on the application of DSSCs in indoor environments were summa-

rized and the need for single universally applicable DSSCs (offering good ‘’pan-illumination’’ performance, under radi-

cally different lighting conditions) was highlighted. When compared with other PV technologies, DSSCs have proven es-

pecially suitable for utilization in low light intensity environments with very high efficiencies achieved and many DSSC-

integrated products already on the market. Further enhancement of their usage flexibility and adaptability in changing 

light conditions is bound to consolidate their place as prime candidates for BIPV, BAPV and PIPV applications regardless 

of the lighting environment under which they operate. 
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