Curriculum vitae

Name: Dr. Periyasamy Panneerselvam

Designation: Senior Scientist

Department: Crop Production Division

Institute: ICAR-National Rice Research Institute, Cuttack

Date of Birth: 01/05/1972

Sex: Male

Email: panneerccri@rediffmail.com

Education Details:

Institution Place	Degree Awarded	Year	Field of Study
Tamil Nadu Agricultural	Post-Graduation (Gold	1997	Agricultural
University, Coimbatore,	Medalist)		Microbiology
India.			
Tamil Nadu Agricultural	Ph.D. (Gold Medalist)	2006	Agricultural
University, Coimbatore,			Microbiology
India.			

Employment Details:

Position	From (Date)	To (date)
Scientist	08.01.1998	05.12.2006
Scientist	08.01.2007	23.09.2015
Senior Scientist	24.09.2015	Till date
	Scientist	Scientist 08.01.1998 Scientist 08.01.2007

Honors/Awards:

Reader	Description
Fellow of Confederation of Horticultural	w.e.f May 2015
Associations of India (CHAI)	
Gold medal and Prof. Dr. S. Kannaiyan and Dr.	The best student in Ph.D (Agricultural
Surendar award	Microbiology) for the year 2006
Best NRRI worker	ICAR-National Rice Research Institute,
(Senior Scientist)	Cuttack
RULA award	International journal for Research under Literal Access (IJRULA)
Dr. B. Vasantharaj David Award	Applied Zoologists Research Association (AZRA), Bhubaneswar, Odisha
Best poster award	3 rd ARRW Int. Symposium, NRRI
Best poster award	XXI Biennial National Symposium of Indian Society of Agronomy, MPUAT, Udaipur, Rajasthan
Outstanding Scientist Award	IJTA 3 rd International conference: International conference on Agriculture, Horticulture and plant scienceNew Delhi
Received "Outstanding Scientist Award 2016 in IJTA	3rd International Conference on Agriculture, Horticulture and Plant Science held at New Delhi, India from 25-26th June 2016 organized by IJTA and Serials Publication Pvt Ltd New Delhi, India.
I have been invited to present research paper entitled" Induction of defense Mechanisms in Coffee against Coffee Leaf Rust caused by Hemileia vastatrix by native Rhizobacterial isolates at the 18th Annual Congress"	Postgraduate Institute of Agriculture, University of Peradenia, Sri Lanka
In competitive mode, I have been sponsored overseas short term training on Bio-remediation of heavy metals	Under Prof. Nanthi S. Bolan, Chair in Environmental Sciences (CFRA), University of South Australia, from 21th February to 19th May 2010 by HRD program of NAIP under Component – I of Learning and Capacity Building

	(L&CB).
Received outstanding certificate in recognition of	At Centre for Environmental Risk
my research work on microbial remediation of	Assessment and Remediation (CERAR),
heavy metal contamination in soil	University of South Australia.
ICAR-JRF fellowship	In Agricultural Microbiology for post
Territ-sixi Teriowship	graduation.
Passed NET Examination	conducted by Agricultural Scientists
r assed NET Examination	Recruitment Board (1997
The U has recognized me as one of the Ph.D	University of South Australia
examiners and evaluated Ph.D thesis entitled	Oniversity of South Australia
"Influence of Biosolids based Co- Composts in	
<u> </u>	
the (im)mobilization and bioavailability of heavy metals".	
	Condhianam Dunal Hairranaitre
Gandhigram Rural University, Tamilnadu has	Gandhigram Rural University,
recognized me as PhD examiner and evaluated	Tamilnadu
thesis entitled "Studies on Native Microbial flora	
and influence of Bio-inoculants in Jatropha	
curcas"	A III : CI
Anna University, Chennai, Tamilnadu has	Anna University, Chennai
recognized me as PhD examiner and evaluated	
thesis entitled "Rhizosphere Engineering to	
enhance Carbon sequestration potential in	
degraded Forest Chennai, India.	
Received three best Research paper awards	From National conference/ sympossium.
Reviewed the many research papers in the	Reviewed the many research papers
following journals viz., Journal of Horticulture	
Science, African Journal of Agricultural	
Research, Biotechnology, 3 Biotech, Journal of	
Cotton Research, Proceedings of the National	
Academy of Sciences, Indian section B:	
Biological Sciences, Karnataka Journal of	
Agriculural Sciences, Oryza, Waste management	
Recognized as PG teacher in Microbiology from	Recognized as PG teacher in
Five following Universities viz., IARI, New	Microbiology
Delhi/ UAS, Bengaluru/ UHS, Bagalkot	
Karnataka/ Gandhigram Rural university,	
Tamilnadu/ JNTU, Hyderabad	

Publications:

Sl. No.	Reader	No.
1.	Books	3
2.	Technical/ popular Articles	12
3.	Technical / Extension bulletin, Training	3
	Manual	
4.	Book Chapter(s)	11
5.	Patents Filed	1
6.	Technologies developed	16
7.	Research and review publication	65
8.	Concepts	8
9.	Process/ methodology development	6
10.	Professional Experience and Training	12
11.	E-Publication	>150

Books:

- P. Panneerselvam and Thangaraju, M.2014. Bio-Fertilizers Consortium for GrowthPromotion in Coffee, ISBN 13: 9783639702859, Scholars' Press, Waldshut-Tiengen, Germany. p.300.
- 2. S. Mohandas and **P.Panneerselvam**, 2015, ArbuscularMycorrhiza in Fruit Crop Production. Astral International (P) Ltd., New Delhi.
- 3. Debasis Mitra, Divya Jain, **P. Panneerselvam,** A. N. Ganeshamurthy, Ei Mon Myo, RittickMondal, AnsumanSenapati. 2019. Microbial Resources for Sustainable Agriculture. Lambert Academic Publishing. ISBN: 978-613-9-83608-6. p. 1-119.

Some of the recent Technical/popular Articles

- Panneerselvam P., U. Kumar, S. Saha, T. Adak and S. Munda. 2016. Effect of Bispyribac sodium on ArbuscularMycorrhizal fungal association in rice. NRRI, News letter, Vol.37. No.1 Jan-March. p18.
- Panneerselvam P., U. Kumar, Snigdhasahu and S.D. Mohapatra.2016.
 Entomopathogenic bacteria isolated from pink stem borer (*Sesamiainferens*). NRRI, News letter, Vol.37. No.2. April -June. p15.

- 3. Upendra Kumar and **P.Panneerselvam**. 2016. Comparative Analysis of functional microbial community in paddy soil in NRRI, Sundarban and Bhitarkanika. NRRI, News letter, Vol.37. No.3. July-September. p13.
- 4. Upendra Kumar and **P. Panneerselvam**. 2016. Characterization of plant-growth promoting bacteria associated with different species of *Azolla* NRRI, News letter, Vol.37. No.4. Oct-Dec. p16.
- 5. **Panneerselvam P**, Kumar U, Anandan A, Parameswaran C, Nayak AK. 2017. Will specific group of AM fungi prefer low phosphorous tolerant rice cultivars? NRRI News letter. Vol.38(1): Jan –March, p11.
- Panneerselvam P, Kumar U, AnandanA ,Selvakumar G, Nayak AK 2017. Arka Microbial Consortium and ArkaActino Plus for sustainable rice production. NRRI, News Letter. Vol. 38(3), July-Sep, p15.
- 7. Kumar U, **Panneerselvam, P** 2017. Development of simple combo- kit for rapid screening of plant growth promoting bacteria. NRRI News letter. 38(4), Oct-Dec p.21.
- 8. Kumar U, **Panneerselvam P.** 2017. Standardized q-PCR-based methodology to quantify nprA gene from agricultural soils. NRRI News letter. 38(4), Oct-Dec p.21.
- 9. Kumar U, **Panneerselvam**, **P**. and Nayak.A.K. 2018. Endophytic nitrogen fixing bacterial inoculants for rice crop. NRRI News letter. 39(1), Jan-March. p.15.
- 10. Kumar U, **Panneerselvam, P** and Nayak.A.K. 2018. Rhizospheric nitrogen fixing bacterial inoculants for rice crop. NRRI News letter. 39(1), Jan-March. p.15.
- 11. Kumar U, **Panneerselvam, P** and Nayak.A.K. 2018. Azollasporocarp formulation for sustainable rice production. NRRI News letter. 39(1), Jan-March. p.16
- 12. Kumar U, **Panneerselvam, P** and Nayak.A.K. 2018. Standardization of q PCR based functional genes related to nitrogen transformation . NRRI News letter. 39(2), Jan-March. p.14.

Technical / Extension bulletin, Training Manual

- Anandan, A, SK.Pradhan, SD. Mohapatra, SanjoySaha, P.Panneerselvam and ON. Singh. 2016. High yielding and water saving NRRI aerobic rice varieties. NRRI Technology Bulletin – 121. ICAR-National Rice Research Institute, April-2016.
- Anandan, A, SK.Das, S.K. Pradhan, SD, SSC. Pattanaik, L. Behra, J. Meher, B.B. Marndi, P.Panneerselvam, S. Lenka, K. Chattopadhyay, ON. Singh. T. Mohapatra 2016. NRRI released different rice varieties suited for different environments. NRRI

- Technology Bulletin 124. ICAR-National Rice Research Institute, September-2016 (Tamil version).
- 3. **Panneerselvam P**, Kumar U, Chourasia M, Nayak AK. 2017. Use of biofertilizer for soil health management. In Soil health and its management (Sarangi et al. eds). Technical Bulletin No. 10. KrishiVigyan Kendra Cuttack, ICAR-National Rice Research Institute, Cuttack, pp: 16-18.

Book Chapter(s):

- P. Panneerselvam, A.N. Ganeshamurthy, B.S. Prabhakar, S.S. Hebbar and P.R.Ramesh.2010.Changes in soil quality in vegetable based cropping system under organic practices.Westvillepublishing house (Eds. H.P. Singh and G.V. Thomas). 252-257.
- Selvakumar, G., P. Panneerselvam and A.N. Ganeshamurthy. 2013. Legume root noduleAssociated bacteria. In: Plant Microbe symbiosis- Fundamentals and Advances (Ed: AroraNaveen Kumar) ISBN: 978-81-322-1286-7, Springer, 215-232.
- 3. Selvakumar, G. **P. Panneerselvam** and A.N.Ganeshamurthy. 2011. Microbial mediatedalleviation of abiotic stress in crops. ISBN: 978-3-642-23464-4, Bacteria in Agrobiology:Stress Management (Ed. D.K. Maheshwari,) Springer, Germany, 205-224.
- 4. Selvakumar, G. **P. Panneerselvam**, G.H. Bindu and A.N.Ganeshamurthy. Pseudomonads: Plantgrowth promotion and Beyond. ISBN: 978-81-322-2067-1. Springer India, 193-208.
- P. Panneerselvam and A.N. Ganeshmurthy. 2014. Biofertilizers for betelvine. 2014.
 In:Souvenir National Meet on Betelvine Farmers, Traders and Research interface,
 IIHRBengaluru, IICAR-IIHR, Bengaluru. P 8-11.
- 6. **Panneerselvam, P.** and B. Saritha. 2013. Response of Horticultural rootstocks to Arbuscularmycorrhizal fungi. In: ICAR Sponsered Short course on Rootstocs in Resilient horticultureProduction System, ICAR-IIHR, Bengaluru. 162-176.
- 7. Ganeshamurthy, A.N., **Panneerselvam, P**. 2013. Soil health Management and microbialintervention in papaya production. In: National Papaya consultations meet, ICAR-IIHR,Bengaluru. 83-93.
- 8. **P. Panneerselvam**, G. Selvakumar, B. Saritha and A.N. Ganeshamurthy.2015. Plant GrowthPromotingRhizobacteria (PGPR) As A Tool to Combat Plant Pathogenic Bacteria. CRC Press,USA.ISBN: 978-1-4822-4053-5.

- 9. **Panneerselvam, P.**, Selvakumar, G. and Ganeshmurthy, A.N. (2016). SabjiyonKeTikauUtpadanKeliyeArkaSukshmanaviyaMishran (Hindi) translated by Anil Kumar Nair andJagadeesan A.K. (Eds), ICAR-IIHR, Bengaluru.
- 10. P. Panneerselvam, Asish K. Binodh, T. Sugitha, Upendra Kumar and A. Anandan.2016.Microbial association in brown rice and their influence on human health. In: Brown Rice ,Eds(A. Manickavasagan, SK. Chandini and N. Venkatachalam) Springer Publication (In press).
- 11. Upendra Kumar, **P. Panneerselvam**, Vadakattu VSR Gupta, M Manjunath, PriyankaPriyadarshinee, ArchanaSahoo, SoumyaRanjita Dash, SangitaSahoo, K Annapurna. 2017.Diversity of sulfur oxidizing and reducing microbes in diverse ecosystems. In Advances in soilmicrobiology: Recent trends and future prospects (Adhya et al.), Vol I, Springer Publication

Patents Filed:

1. Method for Mass Production of Soilless Arbuscular Mycorrhizal Fungal Inoculum

Technologies developed:

- 1. Arka Microbial consortium (India Science, Technology and Innovation)
- Method of mass production of soil-less arbuscular mycorrhizal fungal inoculums (India Science, Technology and Innovation)
- 3. Arka Fermented cocopeat
- 4. Protocols for Seed Pelleting of onion
- 5. Arka Actino Plus
- 6. Endophytic Nitrogen Fixing bacteria for rice production
- 7. Biofertilizers consortium for nutrient management
- 8. Microbial consortium for plant diseases management
- 9. Skermanella: A novel entomopathogenic bacteria for controlling rice leaf folder
- 10. Microbial consortium for pest and disease management
- 11. Azolla-sporocarp formulation for sustainable rice production
- 12. Development of simple combo- kit for rapid screening of plant growth promoting bacteria
- 13. Microbial consortium for paddy straw decomposition
- 14. Azolla pinnata: Good Source of Green manure or Biofertilizer for rice cultivation
- 15. Ascorbic acid formulation for improving diazotrophic efficacy Nitrogen Fixer

16. Method of mass production of soilless arbuscular mycorrhizal fungal inoculums

Concepts:

- 1. Phosphorous tolerant rice varieties and their unique AM fungal association
- 2. Nitrogen fixing bacterial association in Azolla
- 3. Elevated CO₂ alters mycorrhizal association in rice soil
- 4. AM fungal consortium works better in wetland rice cultivation
- 5. Enhancing diazotrophic efficacy Nitrogen Fixer through application of Ascorbic acid
- 6. Acceleration of Paddy straw decomposition through supply of air through perforated pipe
- 7. Azolla pinnata : A good source of green manure
- 8. Mycorrhized rice seedling production

Process/ Methodology Development:

- 1. Standardized qPCR-based methodology to quantify nprA gene from agricultural soils and this gene is play important role in nitrogen mineralization in soil.
- 2. Standardized qPCR-based methodology to assess the functional gene related to nitrogen transformation (nifH, amoA, nirK ans nosZ) i.e. nitrogenase, ammonium monaoxigenase, nitrie and nitrox oxide reductase in soil.
- 3. As one of the co-investigators, standardized 2-D gel electrophoresis protocol to study seed proteome and this work has been published in Oryza journal.
- 4. Standardized the suitability of AML1/AML2 primer pair for analyzing AMF diversity using next- generation sequencing technique i.e. IlluminaMiSeq® platform.
- 5. Methodology for soil based azolla sporocorp production has been standardized
- 6. Simple laboratory screening tool i.e. Combo kit methodology has been standardized for quick screening of PGPR bacteria

Significant contributions:

1. Developed *Arka Microbial Consortium* (combination of N fixer, P solubilizer and growth promoter) for horticultural and plantation crops, *Arka Actino Plus* (*Streptomyces* based product for nutrient and disease management of horticultural crops), *Arka Fermented Cocopeat* (prepared from coir waste by using fungal and bacterial consortium) and *Decomposers* (*Fungal consortium*)— for horticultural seedlings production and decomposition crop residues These technology has been licensed /

commercialized to thirty *private companies*. 14 companies and generated 34.16 Lakhs as revenue (as License fee) to our council (ICAR) during the period from 24.09.2015 to 24.09.2018

- 2. Developed *Soilless Arbuscular Mycorrhizal fungi mass production* by using cocopeat as substrate (*patent has been granted patent number 342299*) and this has been released as technologies at institute level (IIHR, Bangalore)
- 3. Developed *Endophytic Nitrogen fixing inoculants* for rice cultivation and **decomposing** microbial consortium for ex-situ decomposition of rice straw
- 4. Developed AM fungal and bio-fertilizers package for fruit crops production
- 5. Developed following two technologies *viz.*, Bio-fertilizers consortium for nutrient management, and Microbial consortium for pest and disease management for Sikkim organic agricultural production developed by us under DBT project.

Projects Handled: As PI and CO-PIs handled 17 projects including 06 external funding projects

Students Guided : 15 students, 01 PhD (Main Guide), 01 PhD (Co-Guide) 10 PG students (Guide), 03 PG students (Co-Guide)

Publication Details: (2005 – 2020)

S.	Title of Paper	Author	Reference of	Year
no.			journal	
1.	Influence of elevated CO ₂ on	Panneerselvam, P.,	Applied Soil	2020
	arbuscular mycorrhizal fungal	Kumar, U., Senapati,	Ecology	
	community elucidated using	A., Parameswaran, C.,	145, 103344	
	Illumina MiSeq platform in sub-	Anandan, A., Kumar,		
	humid tropical paddy soil	A., Jahan, A., Padhy,		
		S.R. and Nayak, A.K.		
2.	Understanding the Plant-microbe	S.R.	Current Genomics	2020
	Interactions in CRISPR/Cas9 Era:	Prabhukarthikeyan, C.		
	Indeed a Sprinting Start in	Parameswaran*, U.		
	Marathon	Keerthana, Basavaraj		
		Teli, Prasanth Tej		
		Kumar Jagannadham,		
		B. Cayalvizhi, P.		
		Panneerselvam,		
		Ansuman Senapati, K.		

	T	N 1 C1 /	Г	
		Nagendran, Shweta		
		Kumari, Manoj		
		Kumar Yadav, S.		
		Aravindan, S.		
		Sanghamitra		
3.	Current scenario and future	Khoshru, B., Mitra,	Journal of Plant	2020
	prospects of plant growth-	D., Khoshmanzar, E.,	Nutrition	
	promoting rhizobacteria: an	Myo, E.M., Uniyal,	1-31	
	economic valuable resource for	N., Mahakur, B.,		
	the agriculture revival under	Mohapatra, P.K.D.,		
	stressful conditions	Panneerselvam, P.,		
		Boutaj, H., Alizadeh,		
		M. and Cely, M.V.T.,		
4.	Metal (loid) s (As, Hg, Se, Pb and	Khanam, R., Kumar,	Science of the Total	2020
	Cd) in paddy soil: Bioavailability	A., Nayak, A.K.,	Environment 699,	
	and potential risk to human health.	Shahid, M., Tripathi,	134330	
		R., Vijayakumar, S.,		
		Bhaduri, D., Kumar,		
		U., Mohanty, S.,		
		Panneerselvam, P.		
		and Chatterjee, D.		
5.	Phosphate-Solubilizing Microbes	Mitra, D.,	Communications in	2020
	and Biocontrol Agent for Plant	Anđelković, S.,	Soil Science and	
	Nutrition and Protection: Current	Panneerselvam, P.,	Plant Analysis51(5),	
	Perspective.	Senapati, A., Vasić,	pp.645-657.	
	1	T., Ganeshamurthy,		
		A.N., Chauhan, M.,		
		Uniyal, N., Mahakur,		
		B. and Radha, T.K.		
6.	Ascorbic acid formulation for	Upendra Kumar,	Plant Physiology and	2019
0.	survivability and diazotrophic	Megha Kaviraj, P	Biochemistry	2017
	efficacy of Azotobacter	Panneerselvam,	139: 419-427	
	chroococcum Avi2 (MCC 3432)	Himani Priya,	137. 417-421	
	under hydrogen peroxide stress	Koushik Chakraborty,		
	and its role in plant-growth	P Swain, SN		
	promotion in rice (Oryza sativa	Chatterjee, SG		
	L.)	Sharma, PK Nayak,		
	L.)	-		
7	Understanding interesting office	AK Nayak	Journal of Davis	2010
7.	Understanding interaction effect	Panneerselvam, P.,	Journal of Basic	2019
1	of Journal of Basic Microbiology	Sahoo, S., Senapati,	Microbiology59(12),	
	1 1 1 10 11	A TZ TT 3.51	1017 1000	
	arbuscular mycorrhizal fungi in rice under elevated carbon dioxide	A., Kumar, U., Mitra, D., Parameswaran, C.,	pp.1217-1228	

	conditions.,.	Anandan, A., Kumar,		
		A., Jahan, A. and		
		Nayak, A.K.,		
8.	Bio-protection of brown spot	Prabhukarthikeyan, S.	Biological Control,	2019
	disease of rice and insight into the	R., Yadav, M. K.,	137, 104018.	
	molecular basis of interaction	Anandan, A.,		
	between Oryza sativa, Bipolaris	Aravindan, S.,		
	oryzae and Bacillus	Keerthana, U., Raghu,		
	amyloliquefaciens.	S., & Rath, P. C.		
9.	Cyanobiont diversity in six Azolla	Kumar, U., Nayak, A.	Planta, 249(5), 1435-	2019
	spp. and relation to <i>Azolla</i> -nutrient	K., Panneerselvam, P.,	1447.	
	profiling.	Kumar, A., Mohanty,		
		S., Shahid, M., &		
		Dash, P. K.		
10.	Effects of water deficit stress on	Kumar, A., Nayak,	Science of the Total	2019
	agronomic and physiological	A.K., Das, B.S.,	Environment, 650,	
	responses of rice and greenhouse	Panigrahi, N.,	pp.2032-2050.	
	gas emission from rice soil under	Dasgupta, P.,		
	elevated atmospheric CO2.	Mohanty, S., Kumar,		
		U., Panneerselvam,		
		P. and Pathak, H.,		
11.	Web-based tool for calculating	Sharma, S.,	113(1), pp.21-33.	2019.
	field-specific nutrient	Panneerselvam, P.,		
	management for rice in India.	Castillo, R., Manohar,		
	Nutrient Cycling in	S., Raj, R., Ravi, V.		
	Agroecosystems,	and Buresh, R.J.,		
12.	Monsoon variability trends and	Panneerselvam, P.	CAB Reviews,	2019.
	strategies to get through its	and Sudhanshu, S.,	14(003), pp.1-12.	
	vagaries in rice-based systems in			
	eastern India.			
13.	Structural diversity and efficacy of	P radeep Kumar Dash,	Journal of basic	2019
	culturable cellulose decomposing	Pratap Bhattacharyya,	microbiology,	
	bacteria isolated from rice-pulse	Mohammad Shahid,	59(10), 963-978.	
	resource conservation practices	Pritesh Sunder Roy,		
		Soumya Ranjan		
		Padhy, Chinmaya		
		Kumar Swain,		
		Upendra Kumar,		
		Anjani Kumar,		
		Priyanka Gautam,		
		Banawari Lal,		
		Periyasamy		

		Panneerselvam,		
		Amaresh Kumar		
		Nayak		
14.	Antagonistic and plant-growth	•	3 Biotech	2019.
14.		Panneerselvam, P.,	3 Diotecii	2019.
	promoting novel Bacillus species	Senapati, A., Kumar,		
	from long-term organic farming	U., Sharma, L.,		
	soils from Sikkim, India	Lepcha, P.,		
		Prabhukarthikeyan,		
		S.R., Jahan, A.,		
		Parameshwaran, C.,		
		Govindharaj, G.P.P.,		
		Lenka, S. and Nayak,		
		P.K.,		
15.	Larvicidal potential of	Panneerselvam P.,	Journal of	2018
	Skermanella sp. against rice leaf	Kumar U, Sahu S,	invertebrate	
	folder	Mohapatra SD,	pathology, 157:74-	
	(CnaphalocrosismedinalisGuenee)	Dangar TK,	79	
	and pink stem borer	Parameswaran C,		
	(Sesamiainferens Walker)	Jahan A, Senapati A,		
		Govindharaj GP.		
16.	Influence of AM fungi and its	Panneerselvam, P	Journal of Applied	2017
	associated bacteria on growth	and B. Saritha.	and Natural Science	
	promotion and nutrient acquisition		9 (1): 621-625.	
	in grafted sapota seedling			
	production			
17.	Understanding the AM fungal	Sowarnalisha S,	Oryza, 54(3):290-7.	2017
	association in flooded rice under	Panneerselvam P,		
	elevated CO ₂ condition	Tapas C, Anjani K,		
	_	Kumar U, Afrin J,		
		Ansuman S, Anandan		
		A.		
18.	Effects of water deficit stress on	Kumar, A., Nayak,	Science of the Total	2018
	agronomic and physiological	A.K., Das, B.S.,	Environment.	
	responses of rice and greenhouse	Panigrahi, N.,		
	gas emission from rice soil under	Dasgupta, P.,		
	elevated atmospheric CO ₂ .	Mohanty, S., Kumar,		
	cio acca annospiione CO2.	U., Panneerselvam,		
		P. and Pathak, H.		
19.	Arbuscularmycorrhizal fungi	Panneerselvam, P.,	In Advances in Soil	2017
17.	(AMF) for sustainable rice	Kumar, U., Sugitha,	Microbiology:	2017
	production.	T.C.K., Parameswaran,	Recent Trends and	
	production.	C., Sahoo, S., Binodh,	Future Prospects (pp.	
		C., Bando, B., Billoull,	1 diale 1 lospects (pp.	

		A.K., Jahan, A. and	99-126). Springer,	
		Anandan, A.	Singapore.	
20.	Antagonistic potential of	Saritha B,	Plant Archives.	2015
	Mycorrhiza Associated	Panneerselvam P,	15(2):763-8.	
	Pseudomonas putida against soil	Ganeshamurthy AN.		
	borne Fungal Pathogens.			
21.	Morpho-physiological responses	Upreti, K.K., Bhatt,	International journal	2016.
	of grape rootstock 'Dogridge'to	R.M., Panneerselvam,	of fruit science,	
	arbuscularmycorrhizal fungi	P. and Varalakshmi,	16(2), pp.191-209.	
	inoculation under salinity stress.	L.R.	\ // 11	
22.	Studies on host preference of	Saritha, B.,	Plant Arch, 14(2),	2014.
	Glomussp and their synergistic	Panneerselvam,	pp.701-706.	
	effect on sapota (Manilkaraachras	P., Mohandas, S.,		
	(mill) Forsberg) seedlings growth.	Sulladmath, V.V. and		
	(,,,,	Ravindrababu, P.,		
23.	Effect of mycorrhiza-associated	Panneerselvam, P.,	Biological	2013
	bacteria on enhancing	Saritha, B.,	agriculture	
	colonization and sporulation of	Mohandas, S., Upreti,	&horticulture, 29(2),	
	Glomusmosseae and growth	K.K., Poovarasan, S.,	pp.118-131	
	promotion in sapota	Sulladmath, V.V. and	pp.110 101	
	(Manilkaraachras (Mill)	Venugopalan, R.		
	Forsberg) seedlings	venagopaian, re		
24.	Mycorrhizae colonizing	Poovarasan, S.,	Crop protection, 53,	2013
	actinomycetes promote plant	Mohandas, S.,	pp.175-181.	
	growth and control bacterial blight	Paneerselvam, P.,		
	disease of pomegranate	Saritha, B. and Ajay,		
	(Punicagranatum L. cv Bhagwa).	K.M.		
25.	Guava (Psidiumguajava L.)	Mohandas, S.,	Scientiahorticulturae,	2013
	rhizosphereGlomusmosseae	Poovarasan, S.,	150, pp.371-376.	
	spores harbor actinomycetes with	Panneerselvam, P.,		
	growth promoting and antifungal	Saritha, B., Upreti,		
	attributes.	K.K., Kamal, R. and		
		Sita, T.		
26.	Glomus mosseae associated	Panneerselvam, P.,	Biological	2012.
	bacteria and their influence on	Mohandas, S., Saritha,	Agriculture &	
	stimulation of mycorrhizal	B., Upreti, K.K.,	Horticulture, 28(4),	
	colonization, sporulation, and	Poovarasan,	pp.267-279.	
	growth promotion in guava	Monnappa, A. and		
	(Psidium guajava L.) seedlings.	Sulladmath, V.V.,		
27.	Impact of delay in processing on	Velmourougane, K.,	World Journal of	2011.
	mold development, ochratoxin-A	Bhat, R.,	Microbiology and	
	and cup quality in Arabica and	Gopinandhan, T.N.	Biotechnology,	

	Robusta coffee.	and Panneerselvam,	27(8), pp.1809-1816.	
		P.,		
28.	Management of Aspergillus	Velmourougane, K.,	Biological Control,	2011.
	ochraceus and Ochratoxin-A	Bhat, R.,	57(3), pp.215-221.	
	contamination in coffee during on-	Gopinandhan, T.N.		
	farm processing through	and Panneerselvam,		
	commercial yeast inoculation.	P.,		
29.	Role of organic amendments on	Park, J.H., Lamb, D.,	Journal of hazardous	2011.
	enhanced bioremediation of heavy	Paneerselvam, P.,	materials, 185(2-3),	
	metal (loid) contaminated soils.	Choppala, G., Bolan,	pp.549-574.	
		N. and Chung, J.W.,		
30.	Uses and management of poultry	Bolan, N.S., Szogi,	World's Poultry	2010.
	litter.	A.A., Chuasavathi, T.,	Science Journal,	
		Seshadri, B., Rothrock	66(4), pp.673-698.	
		Jr, M.J. and		
		Panneerselvam, P.,		
31.	Microbial consortium and its	Panneerselvam, P.,	Journal of Biological	2008.
	effect on controlling coffee root-	Thangaraju, M. and	Control, 22(2),	
	lesion nematode (Pratylenchus	Senthilkumar, M.,	pp.425-432.	
	coffeae) under nursery conditions.			
32.	Occurrence of ochratoxin-A (OT-	Velmourougane, K.,	J Food Sci Technol,	2007.
	A) in green and commercial	Panneerselvam, P.,	44(3), pp.247-249.	
	coffee samples.	Keshamma, E. and		
	-	Raghuramulu, Y.,		
33.	Induction of defense mechanisms	Panneerselvam, P. and	Postgraduate	2006.
	in coffee (Coffea arabica L.)	Thangaraju, M.	Institute of	
	against coffee leaf rust caused by		Agriculture,	
	Hemileia vastatrix by native		University of	
	rhizobacterial isolates.		Peradeniya:	
			Peradeniya,	
34.	Effect of nutrient levels and	Manuel, R.I. and	Indian Journal of	2005.
	herbicides on weeds and	Panneerselvam, P.,	Weed Science,	
	sugarcane.		37(1and2), pp.114-	
			116.	
			110.	

$\label{project} \textbf{Project}(s) \ \textbf{submitted/being pursued/carried out by Investigator:}$

S. no.	Title of Project	Funding Agency	From Date - To Date	Current Status of Project (Role)	Approved Cost
1.	Paddy straw residues management through in-situ microbial decomposition with mechanical interventions	ICAR- NASF	2020- 2023	On Going (Principal Investigator)	235.66 lakhs
2.	Developing microbial consortium for horticultural crops in rice based cropping system to promote growth, nutrient uptake and diseases management in organic farming in Sikkim	DBT Twining mode project	2016- 2019	Completed (Principal Investigator)	DBT sponsored project Rs.59.2 lakhs (22.38 Lakhs for NRRI and 36.82 lakhs for Sikkim University)
3.	Incentivizing Research in Agriculture: Genetic modifications to improve biological nitrogen fixation for augmenting nitrogen needs of cereals"	ICAR	2017	On-going (Co- Principal Investigator)	
4.	Setting up of model bio-fertilizer production unit for supply of quality bio- inoculants for rice and rice-based cropping system in Odisha	RKVY	2018	On-going (Co- Principal Investigator)	Rs. 284.36 lakhs
5.	Enhancing resilience of rice based production system to climate change	ICAR	2018	On-going (Associate)	Rs. 239.87 lakhs

Professional Experience and Training relevant to the Project:

- As one of the organizing committee members from Crop Production Division, organized and participated in the Akshsaya Tritiya Celebration and farmer fair Exhibitions, at NRRI, Cuttack
- Organized training cum field demonstration on Mode of delivery of microbial consortium and enrichment of microbial inoculants with compost / organic amendments for sustainable agricultural production at Namin Village, East Sikkim. Twenty-six farmers were benefited.
- 3. Organized training cum demonstration on Mode of delivery of microbial consortium and enrichment of microbial inoculants with compost / organic amendments for sustainable agricultural production on 27th October 2017 at East Sikkim. Thirty officers including, Deputy Directors, Agricultural/ Horticultural officers were benefitted.
- 4. Served as Laboratory officer for maintaining/ smooth running/ renovations of Labs at Crop Production Division, NRRI, Cuttack from the year 2016-2018.
- 5. Served as Co-coordinator for preparation of RAC/ QRT reports and presentations at Division level from the year 2016-18.
- 6. Served as In-Charge for maintenance Microbiology Glass house, ICAR-NRRI, Cuttack from the year 2016-2018
- 7. Organized four days training on Modern technique of Microbiology and Biotechnology and exposure visit to IFFCO, Paradeep to 13 students from University of Burdwan, West Bengal from 10.05.2017 to 13.05.2017 at ICAR-NRRI Cuttack
- 8. Served as examination officers for conducting common written examination for the post of Technician (T1) on 04.09.2016
- 9. Served as verifying officers to conduct physical verification of assets and stores including library books of different Divisions/ sections/ units/ KVK for the year 2016-17
- 10. Served as selection committee chairman for selection of Senior Research Fellow post under External funding DBT project
- 11. Served as verifying officers to conduct physical verification of assets and stores including library books of different Divisions/ sections/ units/ KVK for the year 2017-18
- 12. Served as one of the Judges in the essay competition programme organized in the connection with 72nd ICAR-NRRI foundation day and Dhan Diwas on 13.04.2018 at NRRI, Cuttack.

Highlight Your Significant Contributions:

Bioprospecting and use of microbial resources for soil, pest and residue management

Studies on insecticidal properties of entomopathogenic bacteria against rice leaf folder/stem borer

Skermanella sp. isolated from diseased S. inferens larvae was found to have stronger larvicidal activity against S. inferens and C. medinalis than B.thuringiensis (TB161), which was isolated from the rice agroecosystem, under in vitro conditions. Skermanella sp. was the first time reported as entomopathogenic bacterium from rice pink stem borer larvae as well as recorded its larvicidal activity against both rice leaf folder and stem borer. This information has been published Journal of Invertebrate Pathology.

Entomopathogenic bacteria against rice leaf folder/ stem borer

Screening of efficient rice straw degrading microbes

Out of 59 lignocellulolytic microbial isolates, the following efficient isolates *viz.*, *Aspergillus* sp, *Trichoderma*, *Streptomyces* sp and *Bacillus* sp were selected based on rice straw decomposing efficiency and compatibility test. Application of combination of these isolates at the rate of 4.0 % inoculum along with 0.5 % urea found drastically bring down CN ratio (19:1 to 22:1) in paddy straw under small scale (30 kg straw per /pit) compared to inoculated control (CN ratio 37:1, after 40 days of inoculation.

efficient rice straw degrading microbes

Harnessing microbial resources for alleviating abiotic and biotic stresses for improving soil health (Co-Principal Investigator)

Evaluation of Skermanella sp and B. thuringiensis against rice leaf folder under filed condition

Field evaluation of liquid formulation of *Skermanella* sp *and B. thuringiensis* (three strains BT1, BT2 and BT3) against rice leaf folder under field condition in Lalat rice variety during kharif season showed *Skermanella* sp and BT3 application significantly reduced leaf folder incidence (5.2 - 6.4 %) compared to other *B. thuringiensis* (BT1 and BT2). There was 4.2 and 13.2 % leaf folder incidence were recorded in chemical spray and un-inoculated control, respectively.

Development and evaluation NRRI microbial consortium for ex-situ decomposition of paddy straw

NRRI decomposing microbial consortium was developed using efficient lignocellulolytic microbes comprising *Aspergillus* sp, *Trichoderma*, *Streptomyces* sp and *Bacillus* sp and its decomposing potential of rice straw was evaluated under *ex-situ* condition. Application of NRRI consortium (@ 2% inoculum) along with Cowdung (1%) and Urea (0.5%) either with pipe (for aeration) or without pipe found efficient, which decomposed paddy straw within 50 days without turning under pilot scale evaluation in open condition.

Azolla-sporocarp formulation for sustainable rice production (Co-Principal Investigator)

An attempt was made to reduce the initial inoculums load by developing sporocarp-based formulation of *Azolla*. After extensive screening, *A. pinnata* (CRRI-1) has been identified as superior strain for soil-based sporocarp production and it contains 50 spores per 10 gm of soil. This novel sporocarp-based formulation may considerably reduce the quantity of primary inoculums for wet land rice production.

Azolla-sporocarp formulation

Enhancing nutrient use efficiency and productivity in rice based system

Evaluation of Microbial Consortium for enhancement of rice yield under low land and aerobic condition

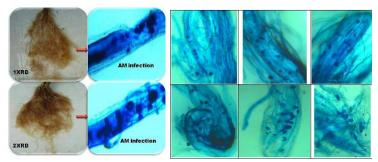
Based on three seasons field experiment, application of microbial consortium (Arka Microbial Consortium / Arka Actino Plus) (@ 20 kg ha⁻¹) along with 75% N, 100% P,K or 75% P, 100% N,K under low land rice cultivation recorded yield at par with 100 % recommended dose of fertilizers, whereas under aerobic condition, the same treatment increased rice yield by 6-11% in addition to saves 25% P or N.

Evaluation of MC under low land and aerobic condition

Studies on AMF interaction in rice plants

The analysis of AMF diversity through Illumina-MiSeq® sequencing technique in flooded paddy soils exposed to eight years eCO₂ drastically reduces Glomerales but encouraged the population belonging to order Diversisporales. This study also finds the suitability of AML1/AML2 primer pair for analyzing AMF diversity using next- generation sequencing technique, this information has been accepted in *Applied Soil Ecology journal*. Based on evaluation and screening, the following AMF isolates *viz. Funneliformis*, *Rhizophagus*, *Claroideoglomus* and *Glomus spp* were selected for wetland cultivation of paddy.

We have proved that the external application of AMF works better at recommended level of fertilizers in flooded rice cultivation at ambient as well as elevated CO₂ conditions (*published in Oryza journal*). Among different methods of AMF application, transplanting of mycorrhized seedlings is better in enhancing mycorrhizal colonization and plant phosphorous uptake as compared to the regular method of basal application of AMF.

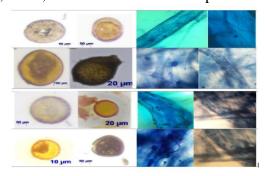

Management of rice weeds by integrated approaches (Co-Principal Investigator)

Effect of herbicides on Arbuscular Mycorrhizal association in rice

Different herbicide molecules *viz.*, Bis-pyribac sodium, Flucetosulfuron, Fenoxaproppethyl, Ehoxysulfuron and Penoxulam were evaluated individually and combination and assessed their effects on AMF colonization and other microbial properties in rice under glass house condition. None of the herbicide molecules harm the AMF colonization and sporulation after 30 -45 days after sowing.

AM fungal root colonization in Bis-pyribac sodium -treated rice (Naveen)

Assessing weed dynamics, management for improving productivity and production of rice


Impact of mixed herbicides and their effects on soil microbial properties in flooded paddy soil

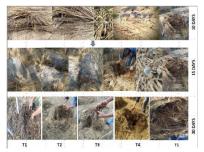
The following ten different herbicides combinations viz., Azimsulfuron, Bispyribac sodium, Flucetosulfuron, Penoxsulam, Cyhalofop-butyl, Fenoxopro-p ethyl, Ethoxysulfuron, XR 848 (benzyl ester), Pretilachlor, Bensulfuron methyl were evaluated. The results indicated that the population of bacteria, fungi and actinomycetes is found disturbed in soil immediately after herbicides application, but there was no significant variation after 20-30 days of herbicides application. Similar trend was observed in FDA, dehydogenase, acid and alkaline phosphatase activities in rice soil.

Formulation, validation and refinement of IPM modules in rice (Co-Principal Investigator)

Studies on effect of different pesticides on AM fungal association in rice

Evaluation of three different insecticides *viz.*, chlorpyriphos, cartap and bavistin on AM fungal association in rice under controlled condition indicated that the recommended and double the recommended dose of cartap and bavistin significantly reduced the microbial properties like MBC, FDA, DHA, AMF colonization and sporulation as compared control.

AM fungal association in rice



Economic and environment friendly use of rice straw (Co-Principal Investigator)

Evaluation of ex-situ decomposition of paddy straw

Three different microbial consortia were evaluated for their efficiency of paddy straw decomposition in large scale (10 t/ pit). In general, the composting rate was higher at 15-30 cm depth as compared 0-15 cm depth. Application of microbial consortium (at 1.0% v/w multiplied in jaggery solution) (*Aspergillus* + *Streptomyces* + *Trichoderma*) with urea (0.5%) found to be promising for decomposition of paddy straw after 60 days compared to uninoculated control.

ex-situ decomposition of paddy straw

Genetic improvement of rice for enhancing input use efficiency (Co-Principal Investigator)

Understanding the bacterial diversity to develop suitable rice variety for aerobic condition

16S Illumina MiSeq metagenomics was done to study the structural diversity pattern of bacteria in aerobic and anaerobic soil where monocropping was practiced for last ten years. Around 42.7% of population was found to be common between aerobic and anaerobic condition, 29.1% were found to be unique under aerobic. It was observed that the most abundant genus was WD2101 (Planctomycetes) followed by either *Kaistobacter* sp (Proteobacteria) or the unclassified genus from acidobacteria.

Developing microbial consortium for horticultural crops in rice based cropping system to promote growth, nutrient uptake and diseases management in organic farming in Sikkim" DBT Twining mode project (PI) (DBT sponsored project)

The following two microbial technologies viz., i) Biofertilizer consortium for nutrient management ii) microbial consortium for pest and disease management were developed for different crop plants under Sikkim Condition. Field evaluation results showed that application of the above said two microbial consortium @ 5.0 lit per ha⁻¹ either through soil drenching (mixing one lit per 100 lit water) or FYM enrichment (1 kg with 100 kg FYM) significantly increased brinjal, okra and beans yield compared to un inoculated control.

consortium for horticultural crops

Incentivizing Research in Agriculture: Genetic modifications to improve biological nitrogen fixation for augmenting nitrogen needs of cereals" ICAR Project (Co-Principal Investigator)

As one of the Co-investigators, liquid formulation of endophytic nitrogen fixer (*Azotobacter chroococcum* Avi2) and free-living *A. vinelandii* SRIAz3 have been formulated for rice cultivation. The salient feature of these bio-inoculants is that application these inoculants could save approximately 12-25% of N without compromising the rice yield. This product is ready for commercialization.

liquid formulation of endophytic nitrogen fixer

Setting up of model bio-fertilizer production unit for supply of quality bio- inoculants for rice and rice-based cropping system in Odisha

Initiated works on setting up model biofertilizers production unit through floating tender for purchase of different instruments and construction of unit by CPWD.

DECLARATION

Place: NRRI, Cuttack

I certify that the information furnished above is true to the best of my knowledge and belief, and that if at any stage it is found to be incorrect/false, I shall be liable for disciplinary action against me as deemed fit.

(**P. Pnneerselvam**)
Signature

